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ABSTRACT
Mobile phones have gone through significant advancements
in the past ten years. Many current smartphones are capable
of advanced asymmetrical cryptography operations, assisted
by their security co-processor’s hardware-backed key store.

Despite the advancements, there is currently no straighfor-
ward way for developers to integrate with native electronic
signature capabilities, and to use device possession as an au-
thentication factor. Services often resort to using methods
that are outdated and do not offer an adequate balance of
security and usability.

This paper introduces a lightweight authentication scheme
that uses hardware-backed asymmetrical cryptography capa-
bilities of iOS devices for electronic signatures. These sig-
natures serve as evidence of authenticated device possession,
and effectively confirm legitimate user identity.

The scheme was designed to couple strong security with
high usability. We measure the scheme’s usability via a user
study, and confirm that it is more usable than current pop-
ular two-factor authentication solutions while providing in-
creased security.

1. INTRODUCTION
As computer usage shifts from traditional workstations

to portable devices and ubiquitous computing, passwords
are becoming less convenient and start to make less sense.
Frequently entering something complex that the user knows
is no longer required on mobile devices — yet we are still
using them at online services.

An anecdote illustrates the point very well. A few months
ago, my grandfather called me to ask me what his Netflix
password was, because his Apple TV was asking for it. My
grandfather didn’t even know he had a Netflix password. I
told him the password, which he first tried to spell using the
remote’s microphone. It didn’t work because voice recogni-
tion systems are not trained for such tasks. He then tried
to enter the password using the remote’s clumsy trackpad,
but the system did not accept the password. He probably
missed a letter. As a consequence, he could not access the
service he had paid for.

2. BACKGROUND

2.1 Weaknesses of Passwords
Not only is the concept of passwords inconvenient, but it

is also fairly insecure. A major issue with passwords is that
they are not ephemeral. Instead of being changed with
every transaction, the same password is capable of signing

every future request besides the current request.
Attackers can also exploit leaked passwords to gain access

to other accounts of the same user. While studying cross-
site password security, Das et al. observed [13] that over
40% of users directly re-use passwords between sites. When
participants were asked how they choose the password for
a new e-mail account, 51% said that they would reuse an
existing password and 26% said that they would modify an
existing password.

Moreover, there is no automatic way to inform users about
password leaks and universally revoke the leaked password.
Such features are commonplace in the public key infrastruc-
ture, effectively preventing leaked private keys from being
used once the leak has been discovered and reported [26].

In Users Are Not The Enemy [1], Adams and Sasse dis-
cuss how password requirements form users’ password
habits. More importantly, they observe that users have a
very poor understanding of what makes passwords se-
cure, and how passwords are cracked. They note that fifty
percent of respondents wrote down their password some-
where to avoid forgetting. Many of them were forced to
periodically change their password, or had to abide by so
many complex rules that they would not have been able to
remember it otherwise. A number of users linked their pass-
words to some common element to make sure they could
remember them all. If an attacker were to figure out one
of these passwords, figuring out the common root would be
easy. Moreover, even though participants usually used this
method to avoid forgetting passwords, it actually had the
opposite effect: similarity lead them to forget which pass-
word belonged to which service.

Passwords are also vulnerable to social engineering at-
tacks, such as phishing. In a 2006 user study, Dhamija and
Tygar [15] found that popup warnings and browsing cues
were not effective enough: good phishing websites fooled
90% of participants. While browsers have advanced since
then, so have phishing techniques. Advanced methods, such
as the homograph attack against internationalised domain
names [30], may even fool experts.

2.2 Digital Signatures
The concept of digital signature was first proposed by

Diffie and Hellmann in 1976 [16]. The FIPS Digital Sig-
nature Standard (DSS) [20] defines digital signatures as a
technology to detect unauthorised modifications to data and
to authenticate the identity of a signatory. The recipient
of signed data can use a digital signature as evidence in
demonstrating to a third party that the signature was, in
fact, generated by the claimed signatory.
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Figure 1: The two main workflows of the Elliptic
Curve Digital Signature Algorithm [20]

The DSS outlines the following requirements for digital
signatures:

• Each signatory owns a key pair consisting of a private
and a public key. These are required for signature
generation and verification. While public keys may be
known by the public, private keys are kept secret.

• A hash function is used in the signature generation
process to obtain a condensed, fixed-length version of
the data to be signed. This is called a message digest.

• Signature generation is based on mathematical trap-
door functions, where it is easy to perform the func-
tion in one direction, but difficult to find the inverse
without having access to special information.

• The digital signature is provided to the intended ver-
ifier along with the signed data. The verifying entity
verifies the signature by using the public key and the
same hash function that was used to generate the sig-
nature.

Figure 1 depicts how these components connect to gener-
ate and verify signatures.

Digital signatures provide the cryptographic security of
many everyday services — from contract management and
timestamping to software distribution and EMV (Chip &
PIN) card transactions. Workflows where end-users meet
digital signatures often operate without their being aware of
the underlying technology. One of the reasons behind this is
that users find it hard to understand the concept of public
and private keys — as Whitten and Tygar conclude in Why
Johnny Can’t Encrypt via a case study of PGP [29].

2.2.1 PGP and its Usability
A popular implementation of public key authentication is

PGP, where it is the user’s responsibility to handle the key
pair. The private and public keys are stored on the user’s
computer, and the mail client uses those keys to generate
a signature or encrypt e-mails. Users are expected to pub-
lish their public keys so that other users can verify their
signature and decrypt their e-mails.

PGP’s usability has been extensively studied. In Why
Johnny Can’t Encrypt [29], the authors conclude that us-
ability requirements of security differ from standard user in-
terface requirements, and define the following priorities for
usable security:

Security software is usable if the people who are expected
to use it:

• “Are reliably made aware of the security tasks they
need to perform.”

• “Are able to figure out how to successfully perform
those tasks. ”

• “Don’t make dangerous errors.”

• “Are sufficiently comfortable with the interface to con-
tinue using it.”

Authors also describe five problematic properties of secu-
rity.

The unmotivated user property suggests that secu-
rity is usually a secondary goal: users do not use devices
for security’s sake, but to perform a set of other tasks [29].
Security is expected to protect them while performing these
tasks, without getting in the way and requiring extra steps
and management. Users are not motivated in security, and
usually just assume that security works. Users must not
be expected to learn about security and look for security
controls to enable security.

The abstraction property describes that computer pro-
grammers should take into account that the concept of regu-
lating access and managing rules may be alien to users, and
many may find it unintuitive [29]. PGP also used a variety
of bad metaphors, such as a quill to represent signatures,
but after clicking on the quill the software requested keys,
confusing users.

The lack of feedback property highlights that provid-
ing good feedback is hard, because security configuration
states are often complex and cannot be adequately sum-
marised [29]. Furthermore, the study notes that the only
good configuration is the one that the user actually wants,
and since the software only knows what the user tells them,
it is hard to prevent configuration errors. For example, copy-
ing their private key onto another computer may be inten-
tional, or it may also be a fatal accident — there is no way
for the software to tell.

The barn door property explains that once a secret
has been left unprotected, there is no way of telling whether
it has been compromised or not [29]. Security interfaces
should prevent users from making mistakes and ensure that
they understand processes well enough. The user study
found that around a quarter of users have accidentally sent
their PGP private key because of the confusing process and
the unrelatable concept of differing private and public keys.
Hence PGP did not adequately ensure that the barn door
was always locked.

Finally, the weakest link property says that since fatal
mistakes can happen in any stage, a security process is only
as usable as its least usable component [29]. Users must
be guided through the process and not be left exploring the
client’s security intuitively, as they would explore a word
processor where actions can always be undone.

The study concludes that PGP does not even come close
to achieving the authors’ usability standard, and that it does
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not make public key encryption of electronic mails manage-
able for average computer users.

PGP still has not been widely replaced with a better so-
lution for e-mail encryption and signature. The study was
repeated by Ruoti et al. [25] in 2015, and concluded that
modern PGP tools are still unusable for the masses.

The scheme proposed in this paper was evaluated based
on the five problematic properties in Section 5.1.

2.2.2 Compartmentalising the private key
While the authors of “Why Johnny Can’t Encrypt” only

considered a scenario when both the public and private keys
were residing on the user’s computer, it is a common practice
to move the private key to a different device, such as a smart
card or a USB dongle. This has a number of advantages:

• It makes the concept of private and public keys easier
to relate to, because the private key becomes an actual
key instead of being a file.

• Since the user does not have direct access to the private
key, it is significantly harder to disclose the key by
mistake.

• External keys can be manufactured in a way that the
private key never leaves the device. This ensures that
the key cannot be replicated, and this makes it a better
candidate for authentication by possession.

There are several standards that use digital signature tech-
nology for authentication. A popular standard is the Uni-
versal 2nd Factor (U2F) Specification by the FIDO Alliance
[28]. Originally created by Google and Yubico, it was de-
signed to log in to online services via an external secondary
factor device, with native support from web browsers. After
initial enrolment, the online service passes a challenge to the
user’s web browser at each login. The user may answer the
challenge by pressing a button on a USB key or by tapping
a device over NFC.

A newer standard by the FIDO Alliance is the Universal
Authenticator Framework (UAF) [23]. It was designed to
optionally replace passwords by saving a private key on a
mobile device, then authenticate at each future login with
said key.

One concern with the UAF standard is that it aims to
be universally compatible with as many devices as possi-
ble, instead of limiting this facility to devices that provide a
stringent enough level of security. The scheme’s universal-
ity adds significant complexity, and brings several security
drawbacks. For example, implementations are allowed to
store the private key in a retrievable manner. Furthermore,
there is no free reference implementation available.

2.3 Asynchronous Cryptography on Mobile De-
vices

Leading modern smartphones are equipped with a trusted
execution environment [18]. This is an area dedicated to
store, process and verify sensitive data, and to ensure that
data integrity and confidentiality is maintained even if the
rest of the device is compromised.

Secure Enclave is the proprietary security co-processor of
iOS devices and Mac computers [7]. It works in tight inte-
gration with the main operating system, and performs real-
time encryption, authentication and other security-related

tasks. It runs a variant of L4 microkernel called SEPOS,
has its own encrypted memory space, and communicates
via a highly limited, messaging-based interface with the rest
of the device.

iOS itself uses Secure Enclave extensively to ensure secu-
rity. For example, disk encryption keys are derived from the
passcode and stored within Secure Enclave [7]. Whenever
the user enters their password, the raw entry is forwarded
to Secure Enclave, and the validation happens within. Se-
cure Enclave checks passcodes, and only unlocks encrypted
files when the correct passcode is received. Furthermore,
it disposes of encryption keys after a number of attempts,
essentially wiping the disk.

The reduced attack surface of Secure Enclave, and its de-
coupled operation ensure that data remains protected and
inaccessible even if an attacker gains access to iOS, and that
the data on iPhones cannot be easily cracked by brute force.

One feature of Secure Enclave is the generation of pairs of
public and private keys within. The public key is returned
to the main OS, but the private key is retained within. The
main OS may only pass message digests to Secure Enclave
along with instructions to sign, without having the ability to
extract the key. Secure Enclave can optionally be configured
to require various levels of local authentication at signing,
such as a passcode or biometric [5].

2.4 Biometrics and Passcodes
Apple introduced support for fingerprint reading in 2013.

While the iPhone 5s was not the first mobile phone with
a fingerprint scanner [11], it was arguably the first phone
that made mobile biometric authentication widely popular
and passcode security convenient. Apple have revealed that
while 49% of users used a passcode before the introduction of
Touch ID, this number has since increased to 89% [3]. They
attribute this to the seamless integration of secure hardware
and software that has turned authentication from a chore to
an invisible step that works reliably and immediately makes
sense. The reason Touch ID is so successful, and why it
was able to bring biometric authentication to the masses, is
arguably its usability and accessibility.

The technology operates alongside the passcode. When-
ever authentication is necessary, users may either enter the
passcode or touch the home button with a previously en-
rolled finger [7]. This lets users overcome the inconvenience
of entering the passcode, and also makes using a longer, more
complex passcode more practical, because users do not have
to enter the passcode as frequently.

DeLuca et al. [14] argued that a well-designed biomet-
ric authentication system can have a positive effect on the
protection of the users’ smartphone data, and found that
Touch ID was considered more usable than the alternatives
(e.g. regular passcodes). It seemed more smoothly inte-
grated into the interaction process and did not add much
overhead (or even none) to the overall unlocking process.
When asked to elaborate, some participants called it ‘fun’,
‘joyful’ and ‘interesting’, and they hardly ever mentioned
trust issues or privacy.

3. PROPOSED SCHEME

3.1 Overview
The proposed scheme offers remote identity verification

on iOS via asynchronous cryptography by utilising native
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security features of iOS and Secure Enclave.
The application generates a keypair in Secure Enclave,

and retains the public key and a reference to the private
key. The public key is shared with third party services dur-
ing an enrolment procedure. Such services may then send
authentication challenges to the device, which are processed
and presented by the application. Challenges can be digi-
tally signed with the private key through an intuitive user
interface after local identity verification. The signature is
returned to the third-party service, where it is verified with
the public key.

3.2 Sample User Journey for Signing a Chal-
lenge

Online money transfers often require authentication with
a secondary factor. To give a better understanding of the
scheme, we introduce its capabilities with wireframes for this
scenario. On Figures 2-5, a user initiates an online money
transfer, and signs the transaction with their mobile phone.

To be paid on:

Start TransferStart TransferStart Transfer

Immediately

Amount:

(You will need to approve this
 transaction on your iPhone)

00102705 30-01-00

Amount: £25.00

Payee: Letting Agency

Transfer Details

Cancel

Figure 2: Preparations. The user enters transaction
details, such as amount and recipient, on the bank’s
website, and initiates the transaction.

To be paid on: Immediately

Amount:

Please approve the 
transaction on your iPhone

00102705 30-01-00

Amount: £25.00

Payee: Letting Agency

Transfer Details

Cancel

Figure 3: The bank’s website instructs the user to
confirm the transaction on their mobile phone.

3.3 Messaging
The scheme uses textual messaging to receive and send

challenges and responses. Messages contain all information
in key-value pairs, and are cryptographically signed to en-
sure authenticity and prevent alteration in transit.

3.3.1 Authentication challenges
To request signature from a device, an authentication

challenge is sent by third-party services. Such messages have
the following parameters:

New Request now
Payment of £25.00 to Letting Agency
from your current account. 

Allow

Decline

Figure 4: Meanwhile, a confirmation message is
delivered to the user’s phone, along with relevant
transaction details. ‘Allow’ prompts the user to au-
thenticate before telling the bank to let the trans-
action go through.

Cancel

to allow transaction
Touch ID

Figure 5: The user is prompted to authenticate
themselves on the phone.

Paid on: Just now

Amount:

Payment Successful

00102705 30-01-00

Amount: £25.00

Payee:

Done

Letting Agency

Transfer Details

Figure 6: After successful authentication, a reply is
sent to the bank and the transaction goes through.

• message id — Identifier of the authentication chal-
lenge, provided by the third-party service. Internally
unique within service.
E.g. “523452”

• subtitle — Designed to contain the name of the third-
party service, and remain static among all messages
from the same service.
E.g. “Purple Online Banking”

• short title — A short summary of body.
E.g. “Login Attempt”

• body — An explanation of the message, potentially
including transaction details.
E.g. “Someone is trying to log in to your Purple Online
Banking account ‘push’ from Glasgow, United King-
dom at 23/02/2018 07:02:23. Is this you?”

• expiry — Unix Epoch timestamp of when the authen-
tication challenge expires.
E.g. “1519387343”

• nonce — To prevent replaying signatures, there is
a cryptographic nonce added to each authentication
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challenge. This is a blob of random data.
E.g. “b5bc3bb46e940ce73591b2f180cc28c
b29e22cbd211895a22e0aef615bf71c1212”

• category — Represents message type. Messages are
currently either in the challengecategory or the enrol-
mentcategory.
E.g. “challengecategory”

• response url — The URL where the client is ex-
pected to send the signature.
E.g. “https://s02.szente.info/authreq-srv/callback.php”

3.3.2 Reply
These messages are sent by the client to respond to au-

thentication challenges with signatures. A reply without a
prior authentication challenge is invalid.

Replies are only sent when the user allows the challenge to
proceed. Third-party services are not notified about denials.

• message id — Internally unique identifier of the au-
thentication challenge, as previously provided by the
third-party service.
E.g. “523452”

• signature — Signature in hexadecimal encoding, gen-
erated by the client using the private key. Signatures
are discussed in a later section.
E.g. “30460221009c53817d9222017713f340c5e539213f
9add2bb0784928a866c410eaa9fd4b46022100ed9ff9f796f
89f61a7bbf8ef2b64b8079dca203fb4be0a15165e39602c4a
3d39”

• publickey — Public key of the client’s keypair. (The
corresponding private key was used to create the signa-
ture.) X.509 DER-encoded certificate, in PEM format.
E.g. “-----BEGIN PUBLIC KEY----- MFkwEwYHKoZ
Izj0CAQYIKoZIzj0DAQcDQgAEeXGgRqcDZBCXQ96
LWVVq2cxg0+Hx\nP8NxGIllbp24Txxa62b/dXBc++i
I3JWQOZbUa2lxyxHTwcxvjzRm4eblcQ==
----- END PUBLIC KEY----- ”

3.4 Enrolment
To perform enrolment, the server component generates a

special authentication challenge that the user must sign, and
sets the category to enrolmentcategory.

As presented in 3.3.2, replies always contain the corre-
sponding device’s public key. This provides an opportunity
for the third-party service to save the public key.

When the server component receives the reply to the en-
rolment message, it saves the device’s public key instead
of validating the signature, and validates all future replies’
signatures using the acquired public key.

3.5 Signatures
Clients create the signature by hashing certain fields of the

original authentication challenge, then signing the hash with
their private key. Third-party services validate the signature
with the client’s public key.

3.5.1 Signature algorithm and keys
The scheme uses the Elliptic Curve Digital Signature Al-

gorithm (X9.62) to sign authentication challenges. The ECDSA
is based on the computational intractability of the discrete
logarithm problem (DLP) in prime-order subgroups of Z∗

p

[21]. It is an ANSI, ISO, IEEE and NIST standard, recom-
mended by the United States National Security Agency to
protect data up to TOP SECRET classification [19]. ECDSA
is widely used in digital signature based technologies, such
as in blockchain-based cryptocurrencies [2].

The scheme utilises 256-bit ECDSA keys (secp256r1),
as defined in Section 5.1.1 of RFC 4492[9]. Although the
NSA now recommends to moving to larger key sizes (e.g.
secp384r1) while awaiting quantum-safe protocols [19], P-
256 is still widely used — and it is the only cipher suite
supported by Secure Enclave as of iOS 11.2.6 [7].

The public key is encoded in standard X.509 DER for
interoperability.

3.5.2 Representing challenges before creating mes-
sage digest

Authentication challenges contain several data fields —
as introduced in 3.3.1. These data fields carry all informa-
tion that the third-party service can pass to the user via
the scheme. As we will later demonstrate in Section 3.5.4
efficient signature must be based on all of these fields.

Bencode is a simple textual data representation format
introduced by the peer-to-peer distribution technology Bit-
Torrent. It was designed to provide bijection between values
and their encodings — making sure that for each data set
there is only one valid Bencode representation, and that two
different Bencode strings can never mean the same data set.

To create a canonical summarised representation of the
key-value pairs, the scheme uses Bencode. The sample au-
thentication challenge of 3.3.1 is converted to the following
representation:
d4:body138:Someone is trying to log in to your Pu

rple Online Banking account ’push’ from Glasgow, Un

ited Kingdom at 23/02/2018 07:02:23. Is this you?8:

category17:challengecategory6:expiryi1519387343e10:

message_idi523452e5:nonce64:b5bc3bb46e940ce73591b2f

180cc28cb29e22cbd211895a22e0aef615bf71c1212:respons

e_url48:https://s02.szente.info/authreq-srv/callbac

k.php11:short_title13:Login Attempt8:subtitle21:Pur

ple Online Banking5:title26:New requeste

3.5.3 Message digest
According to the FIPS DSS, “an approved hash function,

as specified in FIPS 180, shall be used during the generation
of digital signatures” [20]. One of such hash functions is
SHA-384, which is also recommended by the United States
National Security Agency to protect data up to TOP SECRET

classification [19].
Message digest is created by calculating the SHA-384 hash

of the authentication challenge, using its canonical represen-
tation.

The message digest in hexadecimal representation for the
authentication challenge in Section 3.5.2 is 71f182c099317c
4f86ecae7edc315881bb8f47a45f682d8a1f7d6cc51531573f4

295d984756ae7e92dbb7d220bbdc932.

3.5.4 What you see is what you sign
The term“What You See Is What You Sign”was proposed

by Landrock and Pedersen [22]. While traditional signatures
generally certify printed sentences that are directly legible
and understandable by humans, digital signatures certify
binary data that cannot be interpreted by humans in the
original format. Binary data must go through a high level
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semantic interpretation to convert them into a form that hu-
mans understand so that they can review and sign such doc-
uments. However, the same string of bits can be interpreted
in multiple ways, and data that one has signed could poten-
tially mean something else in a different presentation. The
authors propose that digital signature schemes must ensure
that they leave no way to alter the semantic interpretation
of the original message, either by accident or intent, so that
humans can be certain that what they see is what they sign.

The scheme was designed to provide such traits. For each
challenge request there is only one valid presentation, and
fields that carry relevant content (subtitle, short title, body)
are always visible when issuing signatures. Users can be
reasonably expected to have seen each of these fields when
they issue signatures.

The iOS keychain model ensures that the private key re-
mains accessible only for the corresponding app, and that
other applications cannot perform operations. The app bi-
nary is protected by code signature which is verified by iOS
at every startup, ensuring that third-party code cannot hi-
jack the key and sign arbitrary challenges, even with physical
access to the device [7].

3.6 Message Delivery
Three messages are passed between client and server dur-

ing authentication:

1. Authentication challenge (server → client)

2. Reply with signature (client → server)

3. Acknowledgement (server → client)

Acknowledgements are optional, as there is no way to re-
voke signatures once creating them. The signature’s validity
does not depend on the delivery of an acknowledgement.

The current implementation utilises three ways for deliv-
ery of authentication challenges:

• Push notifications — Authentication challenges ar-
rive via push notifications over the air. Users are au-
tomatically notified of pending requests.

• QR codes — The built-in camera application of iOS
is capable of reading QR codes. We encode challenge
data in a special QR code that the user may read with
their mobile phone.

• URL schemes — Special links may be added to web-
sites that open the application and import an authenti-
cation challenge automatically. (It is required to open
said website on the enrolled device, otherwise the link
does not work.)

Replies and acknowledgements happen over HTTP in TLS.
Implemented messaging is further discussed in Section 4.

Messages could potentially be passed in any other way
between client and server, as long as the correct Bencode
representation can be reconstructed after delivery. Possible
ways of extension are discussed in Section 6.5.

4. IMPLEMENTATION
The delivered prototype is called Authreq, and consists of

the following four main components:

• iOS client — where users can receive authentication
requests and send replies with signatures.

• Server — which receives replies and keeps track of
pending requests.

• Service SDK — which allows third parties to inte-
grate with the scheme and create authentication chal-
lenges in their PHP applications.

• Reference Site — which imitates an online banking
site where login attempts and transactions must be
approved via the iOS client.

Figure 11 depicts potential channels of interaction be-
tween implemented components. Figure 16 in the Appendix
documents interaction over time for a complete user journey
of authenticating for a privileged action. A complete user
journey requires all four components to participate: the iOS
client, the server, an external service, and the service SDK.
Possible channels of communication will be presented in de-
tail in subsections of specific components.

4.1 iOS Client
The iOS Client has the following main responsibilities:

• Generating and managing public and private keys

• Enrolling with service providers

• Receiving and processing authentication challenges

• Signing authentication challenges

The application was entirely written in Swift 4, and re-
quires iOS 11. (All devices that support iOS 11 include
Secure Enclave.)

Cryptography operations are only performed via public
APIs of iOS. These are covered by Apple’s regular security
updates [7].

4.1.1 Key generation
Upon startup, the application checks the iOS Keychain

for an existing authentication keypair. If no such keys exist,
it instructs Secure Enclave to generate a new keypair, and
adds the public key to the keychain.

To generate the keypair, the SecKeyGeneratePair func-
tion is used from the Apple Security Framework [6].

We set the following keys and values in the parameters

dictionary:

• kSecAttrTokenID = kSecAttrTokenIDSecureEnclave

Specifies an item should be stored in Secure Enclave.

• kSecAttrKeySizeInBits = 256

Indicates the number of bits in the cryptographic key.

• kSecAttrKeyType = kSecAttrKeyTypeECSECPrime-

Random Elliptic curve algorithm.

For the private key, we ensure that a reference remains
in the device’s keychain by setting kSecAttrIsPermanent to
true, mark the possibility for future authentication prompts
by setting kSecUseAuthenticationUI to .allow, add the ac-
cess control flag .privateKeyUsage to instruct Secure En-
clave to let the key be used for signatures, and add the
kSecAttrAccessibleWhenUnlockedThisDeviceOnly access flag
to ensure that the key does not migrate between devices and
that the device must be unlocked before access.
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Figure 7: Communication from the user’s perspective

4.1.2 Communication
The implemented client receives authentication challenges

over the air via the Apple Push Notification Service (APNs).

Figure 8: iOS client prompting the user to enable
push notifications

Upon first startup, the application asks the user to enable
push notifications. If push notifications are disabled, the
application regularly prompts the user to reconsider their
decision — as presented on Figure 8.

APNs uses a JSON-based messaging format for notifica-
tions [4]. This is a sample push notification, containing the
same data that the request in Section 3.3.1 did.

{"aps" : {
"category ": challengecategory ,
"alert": {

"body" : "Someone is trying to log in
to your Purple Online Banking
account ’push ’ from Glasgow ,
United Kingdom at 23/02/2018
07:02:23. Is this you ?";

"subtitle" : "Purple Online Banking ";
title : "New Request"

},
"badge": 1,
"sound": default ,
"content -available ": 1,

"additional_data ": {
expiry : 1519387343;
"message_id" : 14;
"nonce" : "

b5bc3bb46e940ce73591b2f180cc28cb29
e22cbd211895a22e0aef615bf71c12 ";

"response_url" : "https ://s02.szente.
info/authreq -srv/callback.php";

"short_title" : "Login Attempt ";
"signature" : "fyvRhrhuAv25oqs4+Xlo15

qpZzFymVKQ2gCPbWBNsXgsyuqQAw7pssX
4KBbMmEV4fAj2Rzj9s4KZ4xkXVyMpfJJst
bW2sebDlhAzGGvuAdNrbO2KD+

gPYEgNoqX koKI4UX8BTrRQ8tNKizuzAtQ
+x9sUiGLsZ
v3B7RI43UWQ5ViqSXBHXY12PPW2YvCU/eV
0

qV428thDugvMBuGOVsRLFE5zWhreQUbEj
nIvRUGGfOQk7k4wR7mAmXbUiJxZbWdcALK

Ea8YrPehOnVSr7c0vNPjVZaIkCnzxes1BO
MjatGPYBmxUTwFz0WSUEMDODAtGTwFMl

++ ZsLBLmjE1wYaa+Q==";
}

}}

Push notifications are automatically converted to the client’s
internal storage format upon arrival. Signature validation
and storage are discussed in detail Section 4.1.3.

APNs uses tokens to identify and address devices. Devices
forward their token to the server both during enrolment and
during every signature reply. This allows the server to keep
the device token up-to-date and reliably deliver authentica-
tion challenges over the air.

According to Apple, device tokens may change at certain
rare system events [4]. This may result in undelivered push
notifications. However, by using alternative delivery meth-
ods (such as QR code, as we will later discuss in this section)
requests can still be signed, and the new device token will
automatically be saved on the server at the next successful
signature.

Besides push notifications, the application implements a
url scheme (authreq://) for receiving enrolment requests
and authentication challenges. This provides a universal so-
lution for addding requests via external routes.
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The application expects incoming URLs to contain regular
APNs dictionaries in base64 encoding.

authreq :// eyJhcHMiOnsiYWxlcnQiOnsidGl (...)

The stock camera application of iOS 11 supports QR codes
natively. QR codes with authreq:// URLs inside provide an
easy way to add authentication requests from other comput-
ers without having to rely on push notifications. Users can
simply scan an on-screen QR code and import the encoded
request with a tap — as depicted on Figure 9.

Figure 9: iOS camera reading an Authreq QR code
from a desktop computer. (Image height edited)

Furthermore, the URL scheme also provides a way for
third-party services to add a special button to their website.
The button on Figure 10 is useful when browsing from a de-
vice that is enrolled in the scheme: it directly opens Authreq
and adds the challenge.

Figure 10: ’Add to authreq’ icon that imports the
challenge directly when browsing from the mobile
device

These methods can be used during enrolment and when-
ever push notifications are unreliable.

Replies are sent via secure HTTP by URLSession. The
class can be configured to allow pending requests to con-
tinue in the background, and handles dropped connections
efficiently. Messages are included within the POST request’s
body in JSON.

4.1.3 Signature validation and storage
The iOS client utilises the Core Data framework to ensure

that authentication requests persist between sessions.
Received authentication request dictionaries are converted

to SignatureRequest objects, which is a Core Data backed

internal representation. The SignatureRequest constructor
checks the original dictionary’s integrity and authenticity by
verifying the signature that the server included against the
server’s known public key and the dictionary’s Bencode rep-
resentation. Authentication requests with invalid signatures
are immediately discarded.

The app’s main screen displays a list of previously received
SignatureRequests. We keep track of requests’ status, and
display each request as either active, expired, allowed or de-
clined. Requests can be manually discarded at any time.

4.1.4 Native citizen on iOS
The application was designed to fully take advantage of

native features of iOS, and to provide a user experience that
closely follows stock applications. Since the solution is tai-
lored to iPhone, we did not have to restrict its capabilities to
the subset of features that all platforms and devices support.

The scheme uses rich notifications to deliver information.
Users can fully interact with Authreq without actually open-
ing it, because all information is available directly on the
lockscreen. Notification actions appear for 3D Touch, and
let users sign requests even when the app is not in the fore-
ground. Results are also presented as notifications.

This is especially useful when dealing with challenges that
were triggered by using another app. For example, when a
user needs to authenticate on a page in Mobile Safari, they
can do so without having to leave the browser.

Secure Enclave requires users to authenticate locally be-
fore enabling signatures with the private key. The primary
method of such authentication is biometrics — i.e. Touch
ID or Face ID.

To notify users about successful and unsuccessful trans-
actions, we use stock system sounds that users can connect
to their past experiences with iOS. Furthermore, we use the
Taptic Engine to provide haptic feedback when authentica-
tions happen.

4.1.5 Third-party components
The following third-party components are used by the iOS

client:

• EllipticCurveKeyPair — Wraps certain low-level C
APIs of the Security Framework in Swift. Available
under the MIT license.

• SwiftyRSA — Used to verify authentication chal-
lenges’ digital signature. Available under the MIT li-
cense.

• Piano A wrapper of the AVFoundation and UIHap-
ticFeedback libraries, providing easy access to system
sounds and the Taptic Engine. Available under the
MIT license.

4.2 Server
The Server component has the following responsibilities:

• Receiving and storing replies

• Validating signatures of incoming replies

• Providing an API where other components can check
status of authentication requests

The server component was written in PHP. Since cryptog-
raphy operations are performed via OpenSSL, a PHP build
with OpenSSL support must be used.
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4.2.1 Callback API
As introduced in Section 3.3.1, authentication challenges

contain a callback URL. Behind this URL is the server com-
ponent, which receives and validates replies. The iOS client
sends its reply to this URL for the corresponding challenge.
Such reply messages were introduced in Section 3.3.2.

Signatures are validated by testing them with the client’s
public key and the original message’s Bencode representa-
tion. A DatabaseSignature class instance is created for
each incoming signature, where message_id contains the
corresponding authentication request’s ID, pem contains the
client’s public key and signature contains the received sig-
nature. The validate() method queries the original au-
thentication request from the databse, recreates its Bencode
representation, then checks the signature by performing:
openssl_verify($bencodedOriginalMessage,

hex2bin($this->signature), $this->pem, "sha384");

4.2.2 IsSigned API
The isSigned API queries the database for a specific mes-

sage id to see whether the server has received the corre-
sponding signature from the client. Third-party applications
may use this API to periodically check signature status and
provide immediate feedback when the signature arrives.

4.3 Service SDK
This component allows third parties to send Authreq en-

rolment and authentication requests, and to check signature
status from their own applications.

The SignatureRequest class represents authentication re-
quests. To authorise a user, one must instantiate this class
and fill out the fields from Section 3.3.1. Delivery hap-
pens via push notifications by sendPush(), or elsewhere us-
ing the universal URL scheme representation. We utilise
openssl_random_pseudo_bytes to gather random data for
the cryptographic nonce.

The Signature class represents signatures, as introduced
in Section 4.2.1.

The Service SDK and the Server communicate via a shared
SQL database instance. SignatureRequests created via the
Service SDK are accessed by the server component directly.

Internally, the server component also utilises the Service
SDK.

4.3.1 Reference Service Provider
The reference service provider is a PHP application based

on the Yii framework [17]. It simulates an online banking
site, where users may log in to view account details and
transfer money. User accounts are protected by password,
and a secondary authentication factor which may be SMS,
card reader, TOTP and Authreq.

The component was created to demonstrate capabilities of
the scheme, and to provide a platform where Authreq may
be compared to common secondary authentication factors.

Registration is not implemented. Accounts may be man-
ually added by inserting new records into the user table.

New accounts can be linked to Authreq (i.e. enrolled)
via QR code or by opening an authreq:// hyperlink. Once
linked, all logins and transactions must be approved via Au-
threq by signing authentication challenges.

The reference service provider uses the service SDK to
create authentication requests and to check signature status,
and runs alongside an Authreq server instance and a shared

iOS 
Client

Apple  
Push Notification 

Service 

Reply

HTTPS

Enrolment, 
Authentication challenge

URL Scheme 
(QR code, clickable button, etc.)

Authentication challenge

Push Notification

Data-
base

Third-Party 
Service

Service 
SDK

Server

Figure 11: Communication channels

SQL database instance.

5. EVALUATION

5.1 Comparing to the Five Problematic Prop-
erties of Security

Whitten et al. introduced five problematic properties of
security [29], as discussed in detail in Section 2.2.1. Provid-
ing efficient mitigations to the five properties was an impor-
tant objective during the scheme’s design and implementa-
tion.

• Unmotivated user property — The system’s adop-
tion will arguably depend on its accessibility and us-
ability. Ensuring that users do not feel like Authreq is
a burden to use was an important goal during develop-
ment. We achieve this by utilising hardware that peo-
ple always have on them: their mobile phone. Inter-
acting with nofications and unlocking the device with
Touch ID are both integral parts of the iOS experience,
and eligible users should not have trouble adopting the
technology.

Once enabled, the technology quietly protects the user
by sending notifications whenever someone tries to log
in to their account. The scheme assures users that
their account is always safe, without becoming a dom-
inant part of the workflow.

• Abstraction property — We wrap powerful digital
signature technology with a user journey that com-
pletely abstracts technical details. Instead of public
and private keys, our model is based on approving re-
quests for actions over a different channel. The user
interface was designed to be simple and clutter-free.

• Lack of feedback property — The scheme’s SDK
encourages third-party service providers to summarise
sensitive operations’ details into a single push notifica-
tion. This provides users with a final overview before
committing actions, and also lets users notice and pre-
vent attackers’ operations. The software’s configura-
tion is practically binary: either it is on, or off. Once
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a device is linked to a user account, it is up to the ser-
vice provider to decide when to request authentication
and approval. To lower the number of potential mis-
takes and misunderstandings, the Authreq client does
not offer any user-facing settings.

• Barn door property — The scheme delegates the
responsibility of protecting the barn door to iOS: only
those may issue signatures who are in possession of the
device, and are aware of the required passcode or have
the correct fingerprint. The security model of Secure
Enclave ensures that the private key remains protected
and that it cannot be cloned or moved. Furthermore,
Apple’s operating system offers sophisticated protec-
tion for devices that go out of the user’s possession,
such as remote wiping, automatic wiping after incor-
rect passcode attempts, and company passcode policies
— making iOS-based public key authentication signif-
icantly more secure than traditional solutions, such as
smart cards.

• Weakest link property — The concept of approvals
also helps reduce the effect of third-party services’ weak-
est links. Users can rely on a final confirmation before
sensitive transactions, and gain a soft way to undo
initiated transactions. While Authreq itself requires
one final interaction that cannot be undone, it aims
to make sure that the user is aware of all transaction
details and that challenges are not signed by accident.

5.2 Quantifying the Quality
In Quantifying the Quality of Web Authentication Mecha-

nisms — A Usability Perspective, Renaud proposes a method
to measure the quality of web authentication mechanisms by
a quality coefficient [24].

The author identifies the following three stages of authen-
tication that one should consider from a convenience per-
spective:

• Enrolment — The first use of the system, when the
key is assigned.

• Authentication — Subsequent use of the system.
Since this task is performed regularly, its price will
be paid repeatedly.

• Replacement — Necessary when the user’s key is no
longer valid.

The proposed scheme contains methods for enrolment and
authentication, but not for key replacement. Furthermore,
the current enrolment procedure does not consider key re-
placement, giving it an unfair advantage over other authen-
tication methods. For these reasons, we will concentrate on
authentication during the evaluation.

The quality coefficient compiles a number of factors re-
garding a method’s accessibility, memorability, security and
vulnerability to create a single score. We have measured
the quality of Authreq with this method, and compared it
to other popular solutions: traditional passwords, SMS one-
time passwords, British banks’ card reader based one-time
passwords, and one-time passwords from the Google Au-
thenticator application. The assessed quality of Authreq is
depicted on Table 1, while other methods’ quality are in
Tables 2-5 in the Appendix.

Dim & Aspect Coeff. Reasons

Accessibility ad=0.41
Special Requir. 0.33 Application
Convenience 0.25 Fairly quick, but still

adds another step
Inclusivity 0 Accessibility features of

iOS work with app

Memorability md=0
Retrieval 0 Nothing to recall
Meaningfulness 0 N/A
Depth of proc. 0 N/A

Security sd=0
Predictability 0 Signature prediction re-

quires private key
Abundance 0 High entropy
Disclosure 0 The private key is ad-

equately protected from
disclosure

Vulnerability vd=0
Confidentiality 0 Signature differs every

time. Cannot be reused
Privacy 0 Leaks have no conse-

quences to privacy
Breakability 0 Not prone to social en-

gineering and research
based attacks; ECDSA
widely considered safe

Table 1: Quality of Authreq, measured with the
scheme of Renaud

Following the author’s method, we have calculated the
deficiency for each of the mechanisms as follows (account-
ing for the specialities of web authentication with modifying
factors): eqweb = 13− (ad ∗ 1.5 + md + sd ∗ 1.5 + vd)

In Convenience, instead of considering time taken as a
binary per each stage, we considered the time that a single
authentication takes (0 for very short, 1.0 for very long).
For authentication methods that require a mobile phone, we
have assumed that users own the required devices, and that
they know how to operate the device and the accessibility
options that they possibly need.

Results were as follows:

• Passwords: 8.71

• SMS one-time passwords: 10.71

• Card reader: 9.575

• Google Authenticator: 10.76

• Authreq: 12.385

5.3 User Study

5.3.1 Background
Cristofaro et al. compared the usability of two-factor au-

thentication mechanisms in 2014 [12].
First, the authors conducted interviews to identify pop-

ular technologies, contexts and motivations in which these
technologies are used. Users were from a wide range of ages,
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genders and educational background; and were interviewed
in one-on-one meetings.

Authors found that the most used 2FA technologies were
codes generated by a security token, codes received via SMS
or e-mail, and codes generated by an app. They identified
three primary contexts: work, personal and finance. Par-
ticipants used 2FA either because they were forced to, they
wanted to, or because they received an incentive.

They then conducted a quantitative study to measure the
usability of three popular 2FA solutions: security tokens,
one-time passwords via e-mail or SMS, and dedicated smart-
phone apps like Google Authenticator. An online survey has
been completed by 219 users, where participants had to an-
swer a set of questions on a Likert-scale, and a few other
open-ended questions.

The paper’s authors conclude that user perception of the
usability of two-factor authentication mechanisms is often
correlated with their individual characteristics (e.g. age,
gender, background), rather than with the actual technol-
ogy or the context/motivation in which the technology is
used. They find that the four mechanisms were all perceived
as highly usable, with little difference among them. Users’
perception of trustworthiness was not negatively correlated
with ease of use and required cognitive efforts, and deduct
that technologies that are perceived as more trustworthy are
not necessarily less usable.

5.3.2 Methodology
Building on the methods of Cristofaro et al., we have con-

ducted a user study to compare and measure the usability
of the following authentication methods:

• SMS one-time passwords

• Card reader based one-time passwords

• One-time passwords from Google Authenticator

• Authreq

We recruited 30 participants and organised one-on-one
meetings that took approximately 30 minutes. The survey
consisted of the following three stages:

Stage 1: We gave participants a short questionnaire about
demographics and their prior experience with computers in
general and with multi-factor authentication. Participants
were asked to explain the concept of multi-factor authenti-
cation with their own words, to list mechanisms that they
have used before (along with corresponding scenarios), and
to explain reasons why they enabled the technology.

Stage 2: We gave participants a laptop and a mobile
phone, and introduced them to the reference service provider
for Authreq (introduced in Section 4.3.1). Participants had
to perform a set of simple tasks under each of the studied
2FA mechanisms: Task 1. Log in to Purple Online Banking
with the given user name and password. Task 2. Make
a payment of 30 GBP to David Gray from your Current
Account. Participants were asked to indicate the perceived
difficulty of the tasks under each scenario immediately after.

Stage 3: Participants were asked to fill out a 1-page ques-
tionnaire for each studied 2FA technology. Besides 13 Likert-
scale questions, the questionnaire contained two open-ended
questions where participants were asked to share what they
liked and disliked about each technology. Finally, partici-
pants asked to select the authentication method that they

perceived as the most convenient, most secure, and most
intuitive.

Five participants were asked to mark Authreq on the 10-
item questionnaire of the System Usability Scale [10], which
is a quick and fairly accurate measure of usability accord-
ing to previous research [8]. Cristofaro et al. have argued
that two-factor authentication technologies rely on a unique
combination of hardware and software that SUS may fail to
capture — which is why we did not extend this test to all
authentication methods and participants.

We recorded screen contents and other inputs from par-
ticipating devices, and measured the time of each authenti-
cation. Before each scenario, participants were introduced
to the evaluated 2FA mechanism, and the conductor demon-
strated its operation.

Demographics: The demographics of our participants is
reported in Appendix C in detail. 64.5% of participants were
male, and 19.4% of participants reported having a back-
ground in computing science. Participants were recruited
from all age categories above 18, with their educational back-
ground ranging from less than high school to postgraduate.
Our population’s diversity is similar to Cristofaro et al.’s.

5.3.3 Measuring usability via questionnaire
We performed factor-analysis to convert the variables from

twelve of Stage 2’s Likert-scale questions into a small set of
linearly uncorrelated variables. First, we have examined the
presence of correlation between original variables by calcu-
lating the Kaiser-Meyer-Olkin Measure of Sampling Ade-
quacy and performing Bartlett’s Test of Sphericity. With a
KMO of 0.926, we have deemed the data suitable for analy-
sis.

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .926

Bartlett's Test of Sphericity

Approx. Chi-Square 1605.982

df 66

Sig. .000

Figure 12: KMO and Bartlett’s Test

We continued by performing Principal Component Analy-
sis (PCA) with Varimax (orthogonal) rotation. The analysis
yielded two independent factors.

Communalities range from 0.418 to 0.911 — exact values
are visible on Figure 21 in the Appendix. The two principal
components maintain 77.6% of original information. See
Figure 22 in the Appendix for details.

We labelled Factor 1 Ease of use and trust due to
the high loadings of the following components: happy to
use again, trustworthy, convenient, helpful, enjoyable, quick,
user-friendly. Factor 2 is labelled Cognitive efforts due
to the high loadings of the following items: needed instruc-
tions, had to concentrate, did not match expectations, stress-
ful, did not enjoy using.

We have calculated the two factors’ mean values for each
authentication technology, then tested the values with ANOVA
to determine whether the values differed by technology. See
Figure 23 and 24 in the Appendix for details.

Figure 13 presents the two factors over the four exam-
ined authentication technologies. We have found significant
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Technology Ease of use and trust Cogn. effort

Card Reader 4.09 2.09
SMS 2.26 4.30

Google Auth. 1.90 4.07
Authreq 1.19 4.42

SMS Card Rd. GoogleAuth. Authreq
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Figure 13: Ease of use and trust (lower values are
better) and cognitive effort (higher values are bet-
ter) for each authentication technology

differences between the technologies’ usability.
The worst scores were received by card reader, performing

very poorly both in cognitive efforts and ease of use and
trust. All other methods were perceived as highly usable,
with scores above 4.0 (on a scale of 1 to 5) for cognitive
effort (higher values are better), and under 2.5 for ease of
use and trust (lower values are better).

However, Authreq was found to be significantly easier to
use than other methods with an 1.19 mean score for ease of
use and trust (on a scale of 1 to 5), and 4.42 for cognitive
effort. Open-ended questions provide more insight in Section
5.3.5.

Converting the SUS score to a percentage scale, Authreq’s
overall SUS is more than 80%, which is considered “Grade
A” usability. [12]

5.3.4 Evaluating time taken to complete tasks
Quoting the words of Whitten et al., “people do not gen-

erally sit down at their computers wanting to manage their
security; rather, they want to send e-mail, browse web pages,
or download software, and they want security in place to pro-
tect them while they do those things.” The evaluated mecha-
nisms inevitably extend the time of authentication by adding
another step to the user journey. Arguably, the shorter that
users have to interact with the evaluated systems, the better.

While the questionnaire provided a way to measure per-
ceived usability, the time it has taken to complete tasks
gives concrete, comparable data on the designs’ efficiency
and learnability.

We have found that Authreq was the quickest authentica-
tion method, taking 45% less time than Google Authentica-
tor and SMS on average. These differences do not depend
on age and computing science background.

Participants with computing science background were able

Technology 18-34 35-54 55+ Overall

SMS 21.28 21.25 36.6 23.83
Card Reader 71.28 97.50 117.00 82.40
Google Authentic. 19.85 21.5 38.20 23.13
Authreq 11.23 12.5 18.60 12.63

SMS Card Rd. GoogleAuth. Authreq
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Figure 14: Average time to authenticate, by age —
18-34, 35-54, 55+, overall.

to handle complex tasks quicker. For example, card reader
authentication has taken an average time of 55 seconds,
while non-comp-sci participants required 89 seconds on aver-
age. No such differences were observable regarding Authreq.
Using Authreq took approximately 40% longer for users of
Android than iPhone users, while they performed similarly
at other scenarios. This suggests that familiarity with the
environment is a significant factor, as Authreq uses native
interactions of iOS that iPhone users are habituated to.

5.3.5 Anaylsis of open-ended questions and conduc-
tor’s notes

90% of users found Authreq to be the most convenient
solution, and 70% found it to be the most intuitive. How-
ever, most participants perceived card reader as the most
secure mechanism (40%), making Authreq second (36%).
Cristofaro et al. found trustworthiness not to be negatively
correlated with ease of use and required cognitive efforts,
and that 2FA technologies perceived as more trustworthy
are not necessarily less usable. However, they noted that
their results were in contrast with prior work. While our
study’s participants did not perceive card reader especially
trustworthy, most still named it the most secure out of the
four solutions when asked, some explaining that “it requires
a card, a banking PIN, and pounding many buttons”, and
that “it must be very secure if it is so complex”. Our results
indicate that ease of use and required cognitive effort may
be negatively correlated with perceived security.

Participants mostly praised SMS-based authentication be-
cause of its simplicity and ubiquity. Many called it the de-
facto standard way of 2FA, and used it as basis of compari-
son in open-ended questions. 85% of respondents have used
the technology before, and for most respondents SMS was
the only known 2FA technology. Some mentioned having
experienced text messages that wouldn’t ever arrive. Users
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disliked having to type a string manually on the computer,
that the technology is somewhat slow, and that text mes-
sage contents usually appear on phones without requiring
authentication. On many occasion, when users received the
second text message at Task 2, they did not know which text
message was first and which one was for the new transaction.
Furthermore, after typing the wrong code, participants did
not know whether they had to try re-entering the same code,
or wait for another one.

Authreq uses TCP/IP and APNs for messaging, which
results in significantly faster arrivals. The scheme’s re-
quests cannot be approved without authenticating locally
first, and it mitigates some of the usability issues of
SMS by not having to type a code.

Card reader was the least favourite, but many praised its
(perceived) level of security, calling it “100% secure” and
“reassuring”. Two participants noted that the card requires
a PIN, which is another layer of security. Almost all par-
ticipants mentioned that the scheme is too complicated and
time-consuming. Many mentioned that the card reader must
be carried around and that it is an additional item to lose.
Several participants had issues with using the card reader
in the dark, or without having their glasses nearby, bringing
up serious accessibility issues.

Authreq mitigates concerns about relying on external
hardware by using a device that most participants al-
ways have on them. We fully support the accessibility
features of iOS, such as accessing via screen reader and
TTY. Similarly to card reader, Authreq also requires lo-
cal authentication.

Regarding Google Authenticator, participants liked that there
was no waiting time compared to SMS, and that it was fully
offline. However, some participants disliked having to en-
ter a string manually, and many mentioned that they were
often confused whether they could use a code once it had ex-
pired, or the same code twice within the given time frame.
Many found the 30-seconds timeframe too short. We ob-
served that many participants rather waited for the current
timeframe to end to ensure that they would not run out of
time. Four participants mistyped the code, on two of those
occasions because they didn’t realise that the code changed
mid-entry.

Authreq does not use codes, and for each request we
send a new challenge which we clearly indicate. How-
ever, the current implementation does not support fully
offline operation.

Authreq was described by many as “intuitive” and “really
fast”. Many liked that it involves fingerprint scanning, and
that it can be operated from the lockscreen without having
to open. One participant compared the scheme to Apple
Pay, and called the similarities reassuring. Two participant
were rightfully afraid that the scheme would only work on
iPhone, and one was not used to using their fingerprint to
authenticate, and called it weird.

6. CONCLUSION AND FUTURE WORK
In this paper, we have introduced a novel authentica-

tion mechanism, and provided a reference implementation
that focused on usability. We confirmed Authreq’s usabil-
ity through a user study where we compared it to popular
two-factor authentication solutions. However, the proposed
scheme has the potential to authenticate users under several
other scenarios. We will now discuss further scenarios, some

of the scheme’s limitations, and possible means of extension.

6.1 Other Potential Scenarios
The ECDSA-based digital signature technology provides

sound base for replacing passwords altogether. While it is
not a scenario that we investigated during our user study, it
is within the scheme’s capabilities, and it is why we started
exploring the technology. Such use will require deeper anal-
ysis of user behaviour, and development of a proper key
replacement procedure. The scheme will also require a way
to protect against mass login attempts (and unwanted noti-
fications). One possibility is coupling the proposed scheme
with a simple PIN that services would ask for when logging
in from a new location. This would keep the advantages of
Authreq, while still mitigating the issues presented in Sec-
tion 1 and 2.1.

3-D Secure is an online payment security protocol that
protects cardholders from unauthorised charges by validat-
ing their identity during online transactions [27]. Banks
could potentially integrate the scheme with 3-D Secure and
send notifications about online card transactions before they
happen, prompting users to approve the transaction.

The scheme could also assist users in approving authenti-
cation challenges that do not originate from the web browser.
For example, it could be integrated with EMV (Chip &
Pin) card infrastructure to send authentication challenges
to users about suspicious transactions in real time. This
could potentially help reduce card fraud.

Another financial example is allowing customers to with-
draw cash without being in possession of the card. Users
could scan a QR code (i.e. an authentication challenge)
from the cash machine’s display and sign the challenge on
their mobile phone to prove their identity, instead of having
to insert the card physically.

6.2 Digital Signature and Fraud Prevention
An important advantage of the proposed scheme’s digital

signature technology when compared to passwords and other
one-time passwords is that the signature effectively verifies
that the user has agreed to the transaction in a formally
provable manner — as presented in Section 3.5.4.

A simple and accessible digital signature scheme could
help service providers prevent fraud where the customer first
initiates a transaction, then claims that the transaction was
fraudulent and that it was not them who initiated it.

6.3 Advantages of Public Key Infrastructure
The scheme currently operates with simple private and

public keys that do not belong to a certificate authority.
While this design makes Authreq less centralised and may be
a desirable situation from a privacy standpoint, it introduces
several disadvantages. For example:

• There is no way to identify who signed an authentica-
tion challenge without acquiring their public key first.

• There is a timeframe during enrolment where an at-
tacker could potentially enrol on someone else’s behalf
by acquiring the QR code and sending back their own
signature instead. The server has no way to verify the
origin and owner of the public key.

• In the event of a potential leak of private keys, there
is no channel of revocation.
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The scheme could rely on the concept of Public Key In-
frastructure with little modifications. We could modify the
scheme to instruct Secure Enclave to generate a Certificate
Signing Request, which, along with other data, would be
submitted to a certificate authority. This authority would
provide the client with a certificate, and offer centralised
means of verification and revocation.

It is a privacy concern of the current implementation that
we use the same private and public key with all third-party
services. This gives third-party services means of connecting
accounts of the same user at various services. One may wish
to take this into consideration when extending the scheme
with PKI.

6.4 Key Replacement
Keys within the Secure Enclave cannot be exported or

migrated to other devices. Users can lose their private key
under a variety of scenarios (for example, when the device
is lost or replaced, or when contents are erased), leading to
an important question: what happens when the key can no
longer function?

In Section 5.2 we skipped evaluating Authreq based on its
key replacement procedure because currently there isn’t one.
However, key replacement could be solved by introducing a
chain of trust via PKI. A certificate authority could add an
abstraction layer where it would link devices to users via a
trust chain. Then, it would be users and not devices that are
linked to accounts at third-party services providers. Users
could have an unlimited number of devices — each with their
own private and public key — certified by the certificate au-
thority, allowing users to sign authentication challenges with
any of their devices. The proposed modification is depicted
on Figure 15.

It is the author’s opinion that such scheme would be most
effective if it were a native feature of the device. The de-
vice manufacturer could start acting as a Certificate Au-
thority by automatically enrolling users’ devices in a cen-
tralised scheme and linking devices with the corresponding
user account (i.e. linking device keys to Apple IDs). Users
could sign challenges with their devices, and the manufac-
turer could verify which account the device belonged to (i.e.
whose Apple ID was the challenge was signed with).

6.5 Adding Other Means of Communication
As discussed in Section 4.1.2, our implementation uses

APNs, QR codes and buttons for authentication challenge
delivery, and HTTPS for replies. This is a potential con-
straint, as there are scenarios when signatures are necessary
even though there is no internet connection on the device.

To mitigate this issue, the scheme could be extended with
other delivery methods. Due to the scheme’s simplicity, we
could easily create an SMS gateway that delivered authen-
tication requests and listened for replies. Users could send
replies in SMS when both Wi-Fi and mobile data are un-
available.

Furthermore, we could extend Authreq to optionally pass
replies to the iOS share sheet as a failsafe. This would allow
users to put the reply on the clipboard, or send it via Air-
Drop to another device, and submit the reply to the server
from there.

The scheme’s demo is available on the App Store. Visit
https: // authreq. szente. info/ for more information.

Certifies 
user's devices

Third 
Party 
Service

Certificate  
Authority

Device 

1
Device 

2

User

Knows user

Figure 15: Authreq with PKI
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APPENDIX
A. COMMUNICATION OVER TIME

See Figure 16.

B. QUALITY OF 2FA METHODS

Dim & Aspect Coeff. Reasons

Accessibility ad=0.33
Special Requir. 0
Convenience 0 No extra step
Inclusivity 0.33 Need to remember pass-

word

Memorability md=1.45
Retrieval 1 Need to recall
Meaningfulness 0.33 Self-assigned
Depth of proc. 1 Effort to remember

Security sd=0.61
Predictability 0.25 May be predictable
Abundance 0.25 Can choose any key, but

need to type
Disclosure 0.50 Possible to observe

Vulnerability vd=1.43
Confidentiality 1 Full secret always shared
Privacy 0.25 Password may be reused

— problem at compro-
mise

Breakability 1 Keyboard tapper

Table 2: Quality of basic password authentication,
measured with the scheme of Renaud

Dim & Aspect Coeff. Reasons

Accessibility ad=0.50
Special Requir. 0
Convenience 0.50 May take time to arrive.

Need to enter code man-
ually.

Inclusivity 0

Memorability md=0.25
Retrieval 0 N/A
Meaningfulness 0 N/A
Depth of proc. 0.25 Need to remember code

while typing

Security sd=0.56
Predictability 0
Abundance 0.50 Low key entropy
Disclosure 0.25 Phone number may be

stolen

Vulnerability vd=0.41
Confidentiality 0 Code cannot be reused
Privacy 0.25 Requires phone number,

which is personal
Breakability 0.33 Research-based attack

Table 3: Quality of SMS one-time passwords, mea-
sured with the scheme of Renaud

Dim & Aspect Coeff. Reasons

Accessibility ad=1.45
Special Requir. 0.33 Need to carry around an-

other device
Convenience 1.00 Takes a very long time to

operate
Inclusivity 1.0 Potentially excludes

users with cognitive,
mobility and sensory
disabilities

Memorability md=0.25
Retrieval 0 N/A
Meaningfulness 0 N/A
Depth of proc. 0.25 Need to remember code

while typing

Security sd=0.50
Predictability 0
Abundance 0.50 Low key entropy
Disclosure 0 Card still requires PIN if

stolen

Vulnerability vd=0.25
Confidentiality 0.25 May be reused in same

time frame
Privacy 0
Breakability 0

Table 4: Quality of card reader based one-time pass-
words, measured with the scheme of Renaud

Dim & Aspect Coeff. Reasons

Accessibility ad=0.60
Special Requir. 0.33 App
Convenience 0.50 Need to open app, then

enter code manually.
Inclusivity 0

Memorability md=0.25
Retrieval 0 N/A
Meaningfulness 0 N/A
Depth of proc. 0.25 Need to remember code

while typing

Security sd=0.56
Predictability 0
Abundance 0.50 Low key entropy
Disclosure 0.25 Shared secret can be

stolen

Vulnerability vd=0.25
Confidentiality 0.25 May be reused in same

time frame
Privacy 0
Breakability 0

Table 5: Quality of one-time passwords from Google
Authenticator, measured with the scheme of Re-
naud
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Figure 16: Communication over time
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C. USER STUDY - DEMOGRAPHICS
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Figure 17: Age of participants
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Figure 20: Educational background of participants
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D. USER STUDY

Initial Extraction

Convenient 1.000 .872

Quick 1.000 .900

Enjoy using 1.000 .898

Happy to use again 1.000 .911

Helpful 1.000 .794

Not enjoy using 1.000 .851

User friendly 1.000 .840

Needed instructions 1.000 .737

Had to concentrate 1.000 .738

Stressful 1.000 .752

Did not match expectations 1.000 .601

Trustworthy 1.000 .418

Figure 21: Communalities across variables

Total

% of 

Variance

Cumu-

lative 

%

Initial Eigenvalues

1 8.154 67.946 67.946

2 1.159 9.655 77.602

3 .784 6.536 84.137

4 .473 3.944 88.081

5 .377 3.138 91.219

6 .263 2.195 93.414

7 .254 2.119 95.533

8 .206 1.717 97.250

9 .123 1.024 98.274

10 .088 .732 99.006

11 .068 .565 99.571

12 .052 .429 100.000

Extraction Sums of Squared 

Loadings

1 8.154 67.946 67.946

2 1.159 9.655 77.602

Rotation Sums of Squared 

Loadings

1 6.407 53.394 53.394

2 2.905 24.208 77.602

Figure 22: Variance

Mean N Std. 

Deviation

SMS 2.2679 209 1.16230

Card Reader 4.0905 210 1.27035

Google Authenticator 1.9095 210 0.82218

Authreq 1.1952 210 0.58283

Cumulative 2.3659 839 1.46097

Sum of 

Squares

df Mean 

Square

F

Between Groups (Comb.) 958.113 3 319.371 321.081

Within Groups 830.552 835 0.995

Total 1788.665 838

Figure 23: ANOVA for Ease of Use and Trust

Mean N Std. 

Deviation

SMS 4.3067 150 1.08031

Card Reader 2.0933 150 1.24968

Google Authenticator 4.0733 150 1.14749

Authreq 4.4267 150 1.07658

Cumulative 3.7250 600 1.48314

Sum of 

Squares

df Mean 

Square

F

Between Groups (Comb.) 542.152 3 180.717 138.893

Within Groups 775.473 596 1.301

Total 1317.625 599

Figure 24: ANOVA for Cognitive Efforts
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E. SCREENSHOTS OF ENROLMENT

Figure 25: The user logs in with their usual creden-
tials, and starts the enrolment procedure by select-
ing Protect account with Authreq

Figure 26: The enrolment page presents a button
that the user can tap, or a QR code that they can
scan to add the enrolment challenge to Authreq.
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Figure 27: Authreq is automatically opened by scan-
ning the QR code or tapping on the button. An
enrolment challenge appears.

Figure 28: By tapping on Allow, the device sends a
reply to the challenge — and thus sends its public
key to the service provider.

Figure 29: Successful enrolment is marked by a
green tick on the device.

Figure 30: The website automatically proceeds to a
confirmation screen.
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F. SCREENSHOTS OF AUTHENTICATION

Figure 31: The user begins authentication by enter-
ing their user name and password.

Figure 32: The user is told to approve login on their
iPhone.
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Figure 33: A notification appears on the user’s de-
vice, containing login details.

Figure 34: More information and actions can be re-
vealed via 3D Touch.

Figure 35: Upon tapping on Allow, the device
prompts for local authentication.

Figure 36: Successful authentication is acknowl-
edged by another notification. User identity is now
confirmed. The website automatically proceeds with
login
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